Tutorial：Tensor Approximation in Visualization and Graphics

Graphics Applications

Renato Pajarola，Susanne K．Suter，and Roland Ruiters

 MULTimediaLAB
Multidimensional Datasets

Multidimensional datasets occur in many contexts in Computer Graphics

Bidirectional Reflectance Distribution Function (BRDF)

- 5-dimensional function
- Ratio between incoming irradiance and reflected radiance
$\rho\left(\varphi_{i}, \boldsymbol{\theta}_{i}, \varphi_{o}, \boldsymbol{\theta}_{\boldsymbol{o}}, \lambda\right)$
$\boldsymbol{\varphi}_{\boldsymbol{i}}, \boldsymbol{\theta}_{\boldsymbol{i}} \quad$ Incoming light direction
$\boldsymbol{\varphi}_{o}, \boldsymbol{\theta}_{\boldsymbol{o}} \quad$ Outgoing light direction
$\lambda \quad$ Wavelength

Bidirectional Reflectance Distribution Function (BRDF)

- Focus mostly on isotropic BRDFs

[Sun-2007]	Tucker factorization, database of BRDFS,
In-Out Parameterization	

[Schwenk-2010] CP, spectral BRDF, Half-Diff

[Ruiters-2010] CP, Weights to handle dynamic range, Half-Diff Parameterization
[Bilgili-2010] Repeated Tucker, Log transform to handle dynamic range, Half-Diff Parameterization

Bidirectional Texture Functions \& Spatially Varying BRDFs

- 7-dimensional functions
- Description of the spatially varying reflection behavior of a surface.

$$
\rho\left(x, y, \varphi_{i}, \theta_{i}, \varphi_{o}, \theta_{o}, \lambda\right)
$$

$\boldsymbol{x}, \boldsymbol{y} \quad$ Position on surface
$\boldsymbol{\varphi}_{\boldsymbol{i}}, \boldsymbol{\theta}_{\boldsymbol{i}} \quad$ Incoming light direction
$\boldsymbol{\varphi}_{o}, \boldsymbol{\theta}_{\boldsymbol{o}} \quad$ Outgoing light direction
$\lambda \quad$ Wavelength

Bidirectional Texture Functions \& Spatially Varying BRDFs

- Several approaches
- Can be classified by decomposition type and tensor layout:

	Decomposition	Tensor Layout
[Furukawa-2002]	CANDECOMP/PARAFAC	View \times Light \times Position
[Vasilescu-2004]	Tucker	View \times Light \times Position
[Wang-2005]	Tucker	View \times Light $\times \mathrm{X} \times \mathrm{Y}$
[Wu-2008]	Hierarchical Tucker	View \times Light $\times \mathrm{X} \times \mathrm{Y}$
[Ruiters-2009]	Sparse Tensor Decomposition	View $\times($ Color*Light $) \times$ Position
[Ruiters-2012]	CANDECOMP/PARAFAC	$\theta_{h} \times \theta_{d} \times \varphi_{d} \times$ Position \times Color
[Tsai-2012]	K-CTA	View \times Light $\times \mathrm{X} \times \mathrm{Y}$

[Schwartz-2011]

View-Dependent Occlusion Texture Functions

- Binary view-dependent opacity information [Tsai-2012]
- Enables rendering of complex meso-structures with holes
- Results in a mode-3 tensor: View $\times \mathrm{X} \times \mathrm{Y}$
- Better to store signed distance function instead of binary texture

[Tsai-2012]

Precomputed / Captured Light Transport

- The Reflectance Field describes the light transport in a scene
- 11-dimensional function

$$
R\left(x_{i}, y_{i}, z_{i}, \varphi_{i}, \theta_{i} ; x_{o}, y_{o}, z_{o}, \varphi_{o}, \theta_{o}, \lambda\right)
$$

- For practical applications, simplifications to reduce the dimensionality of the function are necessary

[Tsai-2006]

[Sun-2007]

Precomputed / Captured Light Transport

[Garg-2006] Hierarchical Tensor Decomposition, Illumination and view point outside of the scene, Sparsity and symmetry of tensor utilized to improve measurement time, Mode-8 Tensor
[Tsai-2006] CTA, Representation of incoming and outgoing light using a linear basis, far field illumination, stored at vertices only, Mode-3 Tensor
[Sun-2007] CTA, Dynamic BRDFs introduce two additional modes per bounce for BRDF basis function and region: Mode-5 and Mode-7 Tensor for one and two bounces

[Tsai-2006]

[Sun-2007]

Image / Geometry Ensembles

- In several applications one has to store a large collection of e.g.
- Images (pixel colors)
- [Vasilescu-2002a], [Vasilescu-2007], [Tu-2009]
- Silhouettes (binary values)
- [Peng-2008]
- Geometry (vertex positions)
- [VIasic-2005],[Hasler-2010]
- in dependence on several parameters such as
- Actor
- Pose / Expression
- Orientation
- Illumination

Motion

- Captured motion sequences consisting of
- Center of gravity and joint angles
- [Vasilescu-2002b], [Mukai-2007], [Krüger-2008], [Min-2010], [Liu-2011]
- Positions of vertices or joints
- [Perera-2007], [Wampler-2007]

[Krüger-2008]

- in dependence on parameters such as
- Actor
- Action
- Style
- Repetition number

Applications

- A multi-linear model of such an ensemble has several possible applications:
- Compression
- Synthesis
- Each row of the factor matrices U_{i} of a Tucker decomposition contains a set of weights describing the corresponding mode entry
- By multiplying with a different set of weights a novel actor, motion, expression etc. can be synthesized
- Imputation
- How would an action look like, from an actor that was only filmed for different actions?
- Recognition
- To which actor and expression does this image correspond?

Synthesized expression

Time Varying Sequences

- Adds an additional time dimension to datasets, such as
- Textures
- [Costantini-2008], [Wu-2008]
- Reflectance
- [Wang-2005]
- Volumetric datasets
- [Wang-2005], [Wu-2008]

[Wu-2008]

Tensor Approximation

- Several important questions have to be considered:
- Which parameterization?
- Is my input data registered correctly?
- Which error measure?
- Which decomposition?
- Should every dimension be represented in an individual mode?

Parameterization

-Why is the parameterization of our function important?

- Lets consider two simple test cases (256x256 matrix with 0/1 values):

Parameterization

- The first case can be approximated easily:

CP Decomposition
with 2 components

TUCKER Decomposition with 2×2 core tensor

Parameterization

- But the second case is far more difficult:

CP Decomposition
with 2 components

Parameterization

- But the second case is far more difficult:

CP Decomposition
with 4 components

Parameterization

- But the second case is far more difficult:

CP Decomposition with 8 components

TUCKER Decomposition with 8×8 core tensor

Parameterization

- But the second case is far more difficult:

CP Decomposition with 16 components

TUCKER Decomposition with 16×16 core tensor

Parameterization

- But the second case is far more difficult:

CP Decomposition with 32 components

TUCKER Decomposition with 32×32 core tensor

Parameterization

- But the second case is far more difficult:

CP Decomposition with 64 components

TUCKER Decomposition with 64×64 core tensor

Parameterization

- But the second case is far more difficult:

CP Decomposition with 100 components

TUCKER Decomposition
with 100×100 core tensor

Parameterization

- But the second case is far more difficult:

CP Decomposition with 128 components

TUCKER Decomposition with 128×128 core tensor

Half-Diff Parameterization

- Parameterization of BRDF via incoming and outgoing direction not well suited
- Better alternative via a halfway and a difference vector has been proposed in [Rusinkiewicz-1998]

In/Out Parameterization

Image from [Rusinkiewicz-1998]

Half-Diff Parameterization

- Comparison of two slices through the Mode-3 tensor of an isotropic BRDF

In/Out Parameterization

$$
\varphi_{0}=\mathbf{1 8 0}^{\circ}
$$

Half/Diff Parameterization

Half-Diff Parameterization

- CP approximation of the tensor with 6 components

$$
\varphi_{0}=180^{\circ}
$$

Parameterization

- The difference is also clearly visible in renderings:

Uncompressed BRDF

In/Out Parameterization

Half/Diff Parameterization

Registration

- Correlations can only be exploited, if corresponding features are aligned with each other
- The input data has to be registered correctly!
- Depending on the data-type different types of registration can be employed, e.g.

Registration of two functions via Dynamic Time Warping
\(\left.$$
\begin{array}{ll}\text { Geometry } & \begin{array}{l}\text { Rigid alignment, Non-Rigid alignment, } \\
\text { Reparameterization of the surface }\end{array}
$$

\hline Motion Data \& Dynamic Time warping\end{array}\right\}\)| Images, Volumetric Data | Rigid registration, Warping |
| :--- | :--- |
| BTFs | Alignment of local coordinate systems,
 Good choice of reference plane,
 Parallax correction via reference geometry |

Error Measure

- Some datasets have a very high dynamic range
- Example: BRDFs can exhibit a dynamic range of 10,000:1
- Errors in parts with small values can still be perceptually relevant
- Example: diffuse component of a BRDF
- In these cases the ℓ^{2} error measure is not suitable

Fourth root was applied to the plot!

Dynamic Range Reduction

- Reduce dynamic range by applying transformation to the data prior to tensor decomposition
- E.g. $\log (x)$ was used for BRDFs in [Bilgili-2011]
- Other functions like roots or sigmoid functions could also be used
- Has to be inverted after decompression
- Decomposition is no longer linear
- Can be a problem in applications, where a linear decomposition is needed
- For example, in [Sun-2007], the Tucker Decomposition is used to create a linear basis for BRDFs

Fourth root was applied to the plots!

Relative Error via Per-Element Weights

- Employ a different error metric during the optimization
- Only ℓ^{2} errors can be minimized efficiently via ALS
- Per-element weights w can be included into the approximation
- Can be used to minimize relative errors:
(x original value, \tilde{x} approximation)

Squared error relative to original value

Square of the relative error

$$
\frac{|x-\tilde{x}|^{2}}{|x|}=w|x-\tilde{x}|^{2}
$$

$$
\text { with } w=\frac{1}{|x|}
$$

$$
\frac{|x-\tilde{x}|^{2}}{|x|^{2}}=w|x-\tilde{x}|^{2}
$$

- Decomposition remains linear and no inversion is necessary after decompression
- Additional weights can be used to compensate for the irregular sampling, cosine θ_{i} fall-off, reliability of the input data etc.

Fourth root was applied to the plots!

Error Measure (comparison)

Original

ℓ^{2} Error
$|x-\widetilde{x}|^{2}$
$|\log (x)-\log (\widetilde{x})|^{2}$

Log error

Squared Error relative to original value

$$
\frac{|x-\tilde{x}|^{2}}{|x|}
$$

Square of the relative error

$$
\frac{|x-\widetilde{x}|^{2}}{|x|^{2}}
$$

Fourth root was applied to the plots!

BRDF Compression Results

Compressed

BRDF Compression Results

Which Decomposition to use?

Tucker Decomposition

- Potentially better compression ratios
- Only when the core tensor is small and not too sparse
- Size of core tensor increases as the product of the reduced ranks
- Flexibility: user can choose the rank for each mode individually

23\% of storage for core tensor $(6 \times 6 \times 6 \times 3)$

- Random access very expensive for large core-tensors
- Summation over all entries of the core tensor necessary:

$$
J_{i_{1}, \ldots i_{n}}=\left(\boldsymbol{C} \times \times_{1} \boldsymbol{U}^{(1)} \times_{2} \cdots \times_{n} \boldsymbol{U}^{(n)}\right)_{i_{1} \ldots, i_{n}}=\sum_{j_{1}} U_{i_{1} j_{1}}^{(1)} \sum_{j_{2}} U_{i_{2} i_{2}}^{(2)} \ldots \sum_{j_{n}} U_{i_{n} j_{n}}^{(n)} \mathcal{C}_{j_{1}, \ldots j_{n}}
$$

Which Decomposition to use?

CANDECOMP/PARAFAC Decomposition

- Sparse core tensor: diagonal structure
- More columns in the factor matrices needed
- Random access usually less expensive:

$$
\mathcal{J}_{i_{1}, \ldots, i_{n}}=\left(\sum_{j=1}^{c} \sigma_{j} \circ \boldsymbol{v}_{j}^{(1)} \circ \ldots \circ \boldsymbol{v}_{j}^{(n)}\right)_{i_{1}, \ldots, i_{n}}=\sum_{j=1}^{c} \sigma_{j} v_{i_{1}, j}^{(1)} \cdots v_{i_{n}, j}^{(n)}
$$

Which Decomposition to Use?

Alternatives

- Hierarchical Tensor Approximation
- Possibly faster decompression
- More compact compression for data with multi-resolution decomposition
- Clustered Tensor Approximation / Sparse Tensor Decomposition
- Reduction of decompression cost via clustering
- More compact when the underlying data can be clustered well
- See: next part

How many modes to use?

- Tensor decompositions can be considered as factorization of a high dimensional function into a sum of products of one-dimensional functions:

PARAFAC $\quad f\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=1}^{c} f_{i}^{1}\left(x_{1}\right) f_{i}^{2}\left(x_{2}\right) \cdots f_{i}^{n}\left(x_{n}\right)$

Tucker

$$
f\left(x_{1}, \ldots, x_{n}\right)=\sum_{i_{1}=1}^{c_{1}} \cdots \sum_{i_{n}=1}^{c_{n}} c_{i_{1}, \ldots i_{n}} f_{i_{1}}^{1}\left(x_{1}\right) f_{i_{2}}^{2}\left(x_{2}\right) \cdots i_{i_{n}}^{n}\left(x_{n}\right)
$$

- One can instead factorize into higher-dimensional functions, e.g.

$$
f\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=\sum_{i=1}^{c} f_{i}^{1}\left(x_{1}, x_{2}\right) f_{i}^{2}\left(x_{3}\right) f_{i}^{3}\left(x_{4}, x_{5}\right)
$$

- This is done by "unfolding" several dimensions into one mode of the tensor

How many modes to use?

- Sometimes it is not advisable to represent all "natural" dimensions of the input dataset as modes
- The dimensions exhibit a high complexity, which cannot be factorized well
- No significant gain in compression ratio
- A large number of components would be needed to encode the complexity
- Slow decompression
- [Wang-2005] and [Tsai-2012] decompress spatial compression prior to rendering
- Does not help with limitation of the GPU / main memory
- For sequential decompression on the CPU other techniques, e.g. wavelets [Schwartz-2011], could be used instead
- An irregular sampling pattern is present
- Often the case with BTF measurements
- It would be necessary to resample the input data
- The function has to be represented in a specific linear basis in these modes
- E.g. spherical harmonics, radial basis functions, wavelets, a basis from a PCA...
- For example for PRT computations [Tsai-2006, Sun-2007]

How many modes to use?

Original
16 Components

- The Lego Blocks are an example for a BTF used in [Wang-2005]
- The factorization of the spatial mode has considerable advantages

Note: only one image was factorized for this example

Original
16 Components

- More complex leather sample
- A much larger number of components would be needed for a good reconstruction

How many modes to use?

- Sometimes it is not advisable to represent all "natural" dimensions of the input dataset as modes
- The dimensions exhibit a high complexity, which cannot be factorized well
- No significant gain in compression ratio
- A large number of components would be needed to encode the complexity
- Slow decompression
- [Wang-2005] and [Tsai-2012] decompress spatial compression prior to rendering
- Does not help with limitation of the GPU / main memory
- For sequential decompression on the CPU other techniques, e.g. wavelets [Schwartz-2011], could be used instead
- An irregular sampling pattern is present
- Often the case with BTF measurements
- It would be necessary to resample the input data
- The function has to be represented in a specific linear basis in these modes
- E.g. spherical harmonics, radial basis functions, wavelets, a basis from a PCA...
- For example for PRT computations [Tsai-2006, Sun-2007]

Uncompressed

PCA, 100 Components RMSE 0.008 SSIM 97.06\%

CP, 200 Components RMSE 0.013 SSIM 96.15\%

TUCKER, $28 \times 28 \times 128 \times 128$ core RMSE 0.022 SSIM 95.49\%

$=5$

Compression results on BTFs

Uncompressed

Parameterization via view/light: $\left(\varphi_{i}, \theta_{i}, \varphi_{o}, \theta_{o}\right)$

PCA, 100 Components RMSE 0.008

CP, 200 Components RMSE 0.013

TUCKER, $28 \times 28 \times 128 \times 128$ core RMSE 0.022

Compression results on BTFs

Summary

- Quality of the results depends strongly on your data and problem
- It is worth considering your parameterization, tensor layout, error metric and decompression requirements

- BRDFs

- Good results when all these aspects are taken into account
- BTFs
- Results often not better than PCA based compression
- More research on parameterization might be interesting
- More complex than for BRDFs
- Some effects like parallax or cosine fall-off, depend on light or view direction
- Highlights better parameterized via halfway vector
- Normal directions vary spatially
- Combining several parameterizations [Suykens-2003] might give better results, but was not yet used tensor compression

References

Bilgili-2010

BILGIII A., ÖZTÜRK A., KURT M.: A general BRDF representation based on tensor decomposition. Computer Graphics Forum 30, 8 (2011), pp. 2427-2439.
Costantini-2008 COSTANTINI R., SBAIZ L., SUSSTRUNK S.: Higher order svd analysis for dynamic texture synthesis. In IEEE Transactions on Image Processing 17, 1 (2008), pp. 42-52.
Furukawa-2002 FURUKAWA R., KAWASAKI H., IKEUCHI K., SAKAUCHI M.: Appearance based object modeling using texture database: acquisition, compression and rendering. In Eurographics workshop on Rendering
texture database. aç
(2002), pp. 257-266.
GARG G., TALVALA E.-V., LEVOY M., LENSCH H. P.: Symmetric photography: exploiting datasparseness in reflectance fields. In Eurographics conference on Rendering Techniques (2006), pp. 251262.
GARG G., TALVALA E.-V., LEVOY M., LENSCH H. P.: Symmetric photography: exploiting datasparseness in reflectance fields. In Eurographics conference on Rendering Techniques (2006), pp. 251262. Journal of Virtual Reality and Broadcasting 5, 5 (July 2008).
Liu-2011 LIU G., XU M., PAN Z., RHALIBI A. E.: Human motion generation with multifactor models. In Journal of Visualization and Computer Animation 22, 4 (2011), pp. 351-359.
Matusik-2003 MATUSIK W., PFISTER H., BRAND M., MCMILLAN L.: A data-driven reflectance model. In ACM Transactions on Graphics 22, 3 (2003), pp. 759-769. MIN J., LIU H., CHAI J.: Synthesis and editing of personalized stylistic human motion. In SIGGRAPH symposium on Interactive 3D Graphics and Games (2010), pp. 39-46.
Mukai-2007 MUKAI T., KURIYAMA S.: Multilinear motion synthesis with level-of-detail controls. In Pacific Conference MUKAI T., KURIYAMA S.: Multilinear motion synthesis with
on Computer Graphics and Applications (2007), pp. $9-17$.
Peng-2008 PENG B., QIAN G.: Binocular dance pose recognition and body orientation estimation via multilinear analysis. In Conference on Computer Vision and Pattern Recognition Workshops (2008), pp. 1 -8.
Perera-2007 PERERA M., SHIRATORI T., KUDOH S., NAKAZAWAA., IKEUCHI K.: Multilinear analysis for task PERERA M., SHIRATORI T., KUDOH S., NAKAZAWAA., IKEUCHI K.: Multilinear analysis for task
recognition and person identification. In International Conference on Intelligent Robots and Systems (2007), pp. 1409-1415.
RUITERS R., KLEIN R.: BTF compression via sparse tensor decomposition. In Computer Graphics Forum 28, 4 (July 2009), 1181-1188.
Ruiters-2010 RUITERS R., KLEIN R.: A compact and editable representation for measured BRDFs. Tech. Rep. CG-2010-1, University of Bonn, (2010).
Ruiters-2012
R., SCHWARTZ C., KLEIN R.: Data driven surface reflectance from sparse and irregular samples. In Computer Graphics Forum 31, 2 (May 2012), 315-324.

Schwartz-2011 SCHWARTZ C., WEINMANN M., RUITERS R., KLEIN R.: Integrated high-quality acquisition of geometry and appearance for cultural heritage. In Symposium on Virtual Reality, Archeology and Cultural Heritage (2011), pp. 25-32.

Schwartz-2011b SCHWARTZ C., RUITERS R., WEINMANN M., KLEIN R.: WebGL-based Streaming and Presentation Framework for Bidirectional Texture Functions. In Symposium on Virtual Reality, Archeology and Cultural Heritage (2011), pp. 113-120
Schwenk-2010 SCHWENK K., KUIJPER A., BOCKHOLT U.: Modeling wavelength-dependent BRDFs as factored tensors for real-time spectral rendering. In International Conference on Computer Graphics Theory and Applications (2010), pp. 165-172. Applications (2010), pp. 165-172.
SUN X., ZHOU K., CHEN Y., LIN S., SHI J., GUO B.: Interactive relighting with dynamic BRDFs. In ACM Transactions on Graphics 26, 3 (2007), 27
Sun-2007 SUYKENS F,, BERGEK. V., LAGAEA, DUTR
Suykens-2003 SUYKENS F., BERGE K. V., LAGAE A., DUTRÉ P.: Interactive Rendering with Bidirectional Texture Functions In Computer Graphics Forum 22,3 (2003) pp. 463-472 (2003)

Tsai-2006

 and clustered tensor approximation. In ACM Transactions on Graphics 25, 3 (2006), pp. 967-976.TSAI Y.-T., SHIH Z.-C.: K-clustered tensor approximation: A sparse multilinear model for real-time rendering. In ACM Transactions on Graphics 31, 3 (2012), 19
TU J., FU Y., HUANG T.: Locating nose-tips and estimating head poses in images by tensorposes. IEEE Transactions on Circuits and Systems for Video Technology 19, 1 (2009), pp. 90-102.
Vlasic-2005 VLASIC D., BRAND M., PFISTER H., POPOVIĆ J.: Face transfer with multilinear models. In ACM Transactions on Graphics 24, 3 (2005), pp. 426-433
Vasilescu-2002a VASILESCU M. A. O., TERZOPOULOS D.: Multilinear analysis of image ensembles: Tensorfaces. In Proceedings of the 7th European Conference on Computer Vision-Part I (2002), pp. 447-460
Vasilescu-2002b VASILESCU M.: Human motion signatures: analysis, synthesis, recognition. In International Conference on Pattern Recognition (2002), vol. 3, pp. 456 -460
Vasilescu-2004 VASILESCU M. A. O., TERZOPOULOS D.: TensorTextures: Multilinear image-based rendering. ACM Transactions on Graphics 23, 3 (2004), pp. 336-342.

Vasilescu-2007 VASILESCU M., TERZOPOULOS D.: Multilinear projection for appearance-based recognition in the tensor framework. In International Conference on Computer Vision (2007), pp. 1-8.
Wampler-2007
WAMPLER K., SASAKI D., ZHANG L., POPOVIĆ Z.: Dynamic, expressive speech animation from single mesh. In SIGGRAPH/Eurographics symposium on Computer animation (2007), pp. 53-62.

Wang-2005 WANG H., WU Q., SHI L., YU Y., AHUJA N.: Out of- core tensor approximation of multi-dimensional

Nu-2008
matrices of visual data. In ACM Transactions on Graphics 24, 3 (2005), pp. 527-535.
WU Q., XIA T., CHEN C., LIN H.-Y. S., WANG H., YU Y.: Hierarchical tensor approximation of multidimensional visual data. In IEEE Transactions on Visualization and Computer Graphics 14, 1 (2008),

