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Multidimensional Datasets 
Multidimensional datasets occur in many contexts in Computer Graphics 
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[Sun-2007] 

[Vlasic-2005] [Krüger-2008] [Wu-2008] 



Bidirectional Reflectance Distribution 
Function (BRDF) 
• 5-dimensional function 

• Ratio between incoming irradiance and 
reflected radiance 

 

 

 𝝋𝒊,𝜽𝒊    Incoming light direction 

 𝝋𝒐,𝜽𝒐   Outgoing light direction 

 𝝀           Wavelength 

 

𝝆(𝝋𝒊,𝜽𝒊,𝝋𝒐,𝜽𝒐, 𝝀) 
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All used BRDF input samples are from the MERL BRDF Database [Matusik-2003] 



Bidirectional Reflectance Distribution 
Function (BRDF) 

• Focus mostly on isotropic BRDFs 

[Sun-2007] Tucker factorization, database of BRDFS, 
In-Out Parameterization 

CP, spectral BRDF, Half-Diff 
Parameterization 

CP, Weights to handle dynamic range, 
Half-Diff Parameterization 

Repeated Tucker, Log transform to 
handle dynamic range, Half-Diff 
Parameterization 

[Schwenk-2010] 

[Ruiters-2010] 

[Bilgili-2010] 

4 



Bidirectional Texture Functions & 
Spatially Varying BRDFs  
• 7-dimensional functions 

• Description of the spatially varying reflection behavior of a 
surface. 

 

 

 𝒙,𝒚         Position on surface 

 𝝋𝒊,𝜽𝒊      Incoming light direction 

 𝝋𝒐,𝜽𝒐    Outgoing light direction 

 𝝀            Wavelength 

 

𝝆(𝒙,𝒚,𝝋𝒊,𝜽𝒊,𝝋𝒐,𝜽𝒐, 𝝀) 
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[Schwartz-2011] 



Bidirectional Texture Functions & 
Spatially Varying BRDFs 

• Several approaches 
‣ Can be classified by decomposition type and tensor layout: 

Decomposition Tensor Layout 

[Furukawa-2002] CANDECOMP/PARAFAC View × Light × Position 

[Vasilescu-2004] Tucker  View × Light × Position 

[Wang-2005] Tucker  View × Light × X × Y 

[Wu-2008] Hierarchical Tucker  View × Light × X × Y 

[Ruiters-2009] Sparse Tensor Decomposition View × (Color*Light) × Position 
[Ruiters-2012] CANDECOMP/PARAFAC 𝜃ℎ × 𝜃𝑑 × 𝜑𝑑× Position× Color 
[Tsai-2012] K-CTA View × Light × X × Y 
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[Schwartz-2011] 



View-Dependent Occlusion Texture 
Functions 
• Binary view-dependent opacity information [Tsai-2012] 
‣ Enables rendering of complex meso-structures with holes 

• Results in a mode-3 tensor: View × X × Y 

• Better to store signed distance function instead of binary 
texture 
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[Tsai-2012] 



Precomputed / Captured Light Transport 

• The Reflectance Field describes the light transport in a scene 

• 11-dimensional function 
 

‣ For practical applications, simplifications to reduce the dimensionality 
of the function are necessary 
 

 

 

𝑹(𝒙𝒊,𝒚𝒊, 𝒛𝒊,𝝋𝒊,𝜽𝒊;𝒙𝒐,𝒚𝒐, 𝒛𝒐,𝝋𝒐,𝜽𝒐, 𝝀) 
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[Tsai-2006] 

[Sun-2007] 



Precomputed / Captured Light Transport 

Hierarchical Tensor Decomposition, Illumination and view point 
outside of the scene, Sparsity and symmetry of tensor utilized to 
improve measurement time,  Mode-8 Tensor 

 
CTA, Representation of incoming and outgoing light using a linear 
basis, far field illumination, stored at vertices only, Mode-3 Tensor 
 
CTA, Dynamic BRDFs introduce two additional modes per bounce for 
BRDF basis function and region: Mode-5 and Mode-7 Tensor for one 
and two bounces 

 

 

[Tsai-2006] 

[Sun-2007] 

[Garg-2006] 

[Tsai-2006] 

[Sun-2007] 
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Image / Geometry Ensembles 
• In several applications one has to store a large 

collection of e.g. 
‣ Images       (pixel colors) 

– [Vasilescu-2002a], [Vasilescu-2007], [Tu-2009] 

‣ Silhouettes (binary values) 
– [Peng-2008] 

‣ Geometry   (vertex positions) 
– [Vlasic-2005],[Hasler-2010] 

• in dependence on several parameters such as 
‣ Actor 
‣ Pose / Expression 
‣ Orientation 
‣ Illumination 

[Vasilescu-2002] 

[Vlasic-2005] 

[Peng-2008] 
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Motion 
• Captured motion sequences consisting of 
‣ Center of gravity and joint angles 

– [Vasilescu-2002b], [Mukai-2007], [Krüger-2008], [Min-2010], [Liu-2011] 

‣ Positions of vertices or joints 
– [Perera-2007], [Wampler-2007] 

 

• in dependence on parameters such as 
‣ Actor 

‣ Action 

‣ Style 

‣ Repetition number 

[Krüger-2008] 

[Min-2010] 
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Applications 
• A multi-linear model of such an ensemble has several possible 

applications: 
‣ Compression 

‣ Synthesis 
– Each row of the factor matrices 𝑈𝑖 of a Tucker decomposition contains a set of 

weights describing the corresponding mode entry 
■ By multiplying with a different set of weights a novel actor, motion, expression etc. 

can be synthesized 

‣ Imputation 
– How would an action look like, from an actor that was only filmed for different 

actions? 

‣ Recognition 
– To which actor and expression does this image correspond? 

Synthesized expression 

Synthesized  actor 

Face tracking 

Examples from [Vlasic-2005] 
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Time Varying Sequences 
• Adds an additional time dimension to datasets, such as 
‣ Textures                                 

– [Costantini-2008], [Wu-2008] 

‣ Reflectance                                 
– [Wang-2005] 

‣ Volumetric datasets 
– [Wang-2005], [Wu-2008] 

 

 

[Wang-2005] 

[Wu-2008] 
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Tensor Approximation 
• Several important questions have to be considered: 
‣ Which parameterization? 

– Is my input data registered correctly? 

‣ Which error measure? 

‣ Which decomposition? 

‣ Should every dimension be represented in an individual mode? 
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Parameterization 
• Why is the parameterization of our function important? 

• Lets consider two simple test cases (256x256 matrix with 0/1 values): 
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Parameterization 
• The first case can be approximated easily: 

CP Decomposition 
with 2 components 

TUCKER Decomposition 
 with 2x2 core tensor 
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Parameterization 
• But the second case is far more difficult: 

CP Decomposition 
with 2 components 

TUCKER Decomposition 
 with 2x2 core tensor 
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Parameterization 
• But the second case is far more difficult: 

CP Decomposition 
with 4 components 

TUCKER Decomposition 
 with 4x4 core tensor 
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Parameterization 
• But the second case is far more difficult: 

CP Decomposition 
with 8 components 

TUCKER Decomposition 
 with 8x8 core tensor 

19 



Parameterization 
• But the second case is far more difficult: 

CP Decomposition 
with 16 components 

TUCKER Decomposition 
 with 16x16 core tensor 
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Parameterization 
• But the second case is far more difficult: 

CP Decomposition 
with 32 components 

TUCKER Decomposition 
 with 32x32 core tensor 
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Parameterization 
• But the second case is far more difficult: 

CP Decomposition 
with 64 components 

TUCKER Decomposition 
 with 64x64 core tensor 
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Parameterization 
• But the second case is far more difficult: 

CP Decomposition 
with 100 components 

TUCKER Decomposition 
 with 100x100 core tensor 
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Parameterization 
• But the second case is far more difficult: 

CP Decomposition 
with 128 components 

TUCKER Decomposition 
 with 128x128 core tensor 
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Half-Diff Parameterization 
• Parameterization of BRDF via incoming and outgoing direction not well 

suited 
‣ Better alternative via a halfway and a difference vector has been proposed in 

[Rusinkiewicz-1998] 

In/Out Parameterization Half/Diff Parameterization 
Image from [Rusinkiewicz-1998] 
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Half-Diff Parameterization 
• Comparison of two slices through the Mode-3 tensor of an isotropic BRDF 

𝜽 𝒊
 

𝜽𝒐 

𝜽 𝒅
 

𝜽𝒉 
𝝋𝟎 = 𝟏𝟏𝟎𝟏 𝝋𝒅 = 𝟗𝟎𝟏 

In/Out Parameterization Half/Diff Parameterization 
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Half-Diff Parameterization 
• CP approximation of the tensor with 6 components 

𝜽 𝒊
 

𝜽𝒐 

𝜽 𝒅
 

𝜽𝒉 
𝝋𝟎 = 𝟏𝟏𝟎𝟏 𝝋𝒅 = 𝟗𝟎𝟏 

In/Out Parameterization Half/Diff Parameterization 

27 



Parameterization 
• The difference is also clearly visible in renderings: 

Uncompressed BRDF In/Out Parameterization Half/Diff Parameterization 
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Registration 
• Correlations can only be exploited, if corresponding 

features are aligned with each other 
‣ The input data has to be registered correctly! 

• Depending on the data-type different types of 
registration can be employed, e.g. 

29 

Geometry Rigid alignment, Non-Rigid alignment,  
Reparameterization of the surface 

Motion Data Dynamic Time warping 
Images, Volumetric Data Rigid registration, Warping 
BTFs Alignment of local coordinate systems, 

Good choice of reference plane, 
Parallax correction via reference geometry 

Registration of two functions via  
Dynamic Time Warping 



Error Measure  
• Some datasets have a very high dynamic range 
‣ Example: BRDFs can exhibit a dynamic range of 10,000:1 

• Errors in parts with small values can still be perceptually 
relevant 
‣ Example: diffuse component of a BRDF 

• In these cases the ℓ2 error measure is not suitable 

Fourth root was applied to the plot! 
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Original 
Tensor approximation 



Dynamic Range Reduction 
• Reduce dynamic range by applying transformation to the data prior to 

tensor decomposition 
‣ E.g. 𝐥𝐥𝐥 𝒙  was used for BRDFs in [Bilgili-2011] 

– Other functions like roots or sigmoid functions could also be used 

‣ Has to be inverted after decompression 

‣ Decomposition is no longer linear 
– Can be a problem in applications, where a linear decomposition is needed 

■ For example, in [Sun-2007], the Tucker Decomposition is used to create a linear basis for 
BRDFs 

log PARAFAC exp 

Fourth root was applied to the plots! 
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Relative Error via Per-Element Weights 

• Employ a different error metric during the optimization 
‣ Only ℓ2 errors can be minimized efficiently via ALS 
‣ Per-element weights 𝑤 can be included into the approximation 

– Can be used to minimize relative errors: 
 

 
 
 

 

‣ Decomposition remains linear and no inversion is necessary after 
decompression 

‣ Additional weights can be used to compensate for the irregular 
sampling, cosine 𝜃𝑖 fall-off, reliability of the input data etc. 

 

𝑥 − 𝑥� 2

𝑥
= 𝑤 𝑥 −  𝑥� 2     with 𝑤 = 1

𝑥
 

𝑥 − 𝑥� 2

𝑥 2 = 𝑤 𝑥 −  𝑥� 2     with 𝑤 = 1
𝑥 2 

Squared error  
relative to original value 

Square of the  
relative error 

(𝑥 original value, 𝑥� approximation) C
P 

Weights 

Fourth root was 
 applied to the plots! 
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Error Measure (comparison) 

Original ℓ𝟐 Error Log error 

𝒙 −  𝒙� 𝟐

𝒙
 

𝒙 −  𝒙� 𝟐

𝒙 𝟐  log(𝒙)  − log(𝒙�) 𝟐 𝒙 − 𝒙� 𝟐 

Squared Error  
relative to original value 

Square of the  
relative error 

Fourth root was applied to the plots! 



BRDF Compression Results 

Uncompressed 

Compressed 

CP Compression 
 
Components: 8 
Original:          33 MB 
Compressed:  23 KB 
Ratio:  ≈1500:1 
 

E. Measure: 
 
Additional weights to  
compensate for irregular  
sampling and for cos 𝜃𝑖  
and cos 𝜃𝑜 
 
 
 

34 Results from [Ruiters-2010] 

𝑥 −  𝑥� 2

𝑥
 



BRDF Compression Results 

35 Results from [Ruiters-2010] 
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Which Decomposition to use? 
Tucker Decomposition 

• Potentially better compression ratios 
‣ Only when the core tensor is small and not too sparse 

– Size of core tensor increases as the product of the reduced ranks 

‣ Flexibility: user can choose the rank for each mode individually 

 

• Random access very expensive for large core-tensors 
‣ Summation over all entries of the core tensor necessary: 

 

 

 

𝒯𝑖1,…,𝑖𝑛 = (𝓒 ×1 𝑼 1 ×2 ··· ×𝑛 𝑼(𝑛))𝑖1,…,𝑖𝑛= �𝑈𝑖1𝑗1
(1)

𝑗1

�𝑈𝑖2𝑗2
(2)

𝑗2

⋅·⋅�𝑈𝑖𝑛𝑗𝑛
(𝑛) 𝒞𝑗1,…,𝑗𝑛

𝑗𝑛

 
99% of storage 
for core tensor 

(28×28×128×128) 

23% of storage 
for core tensor 
(6×6×6×3) 
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Which Decomposition to use? 
CANDECOMP/PARAFAC Decomposition 

• Sparse core tensor: diagonal structure 

• More columns in the factor matrices needed 

 

• Random access usually less expensive: 

 

 

 

𝒯𝑖1,…,𝑖𝑛 = (�𝜎𝑗 ∘ 𝒗𝑗
1

𝐶

𝑗=1

 ∘ ··· ∘  𝒗𝑗
(𝑛))𝑖1,…,𝑖𝑛= �𝜎𝑗𝑣𝑖1,𝑗

1
𝐶

𝑗=1

··· 𝑣𝑖𝑛,𝑗
𝑛  
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Which Decomposition to Use? 
Alternatives 

• Hierarchical Tensor Approximation 
‣ Possibly faster decompression 

‣ More compact  compression for data with multi-resolution decomposition 
 

• Clustered Tensor Approximation / Sparse Tensor Decomposition 
‣ Reduction of decompression cost via clustering 

‣ More compact when the underlying data can be clustered well 

‣ See: next part 
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How many modes to use? 
• Tensor decompositions can be considered as factorization of a high 

dimensional function into a sum of products of one-dimensional functions: 
 
 
 
 

• One can instead factorize into higher-dimensional functions, e.g. 
 
 

• This is done by “unfolding” several dimensions into one mode of the 
tensor 

𝑓 𝑥1, … , 𝑥𝑛 = �𝑓𝑖1 𝑥1 𝑓𝑖2 𝑥2 ⋯
𝐶

𝑖=1

𝑓𝑖𝑛 𝑥𝑛  

𝑓 𝑥1, … , 𝑥𝑛 = �⋯ � 𝒞𝑖1,…,𝑖𝑛𝑓𝑖1
1 𝑥1 𝑓𝑖2

2 𝑥2 ⋯
𝐶𝑛

𝑖𝑛=1

𝑓𝑖𝑛
𝑛 𝑥𝑛

𝐶1

𝑖1=1

 

PARAFAC 

Tucker 

𝑓 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5 = �𝑓𝑖1 𝑥1, 𝑥2 𝑓𝑖2 𝑥3

𝐶

𝑖=1

𝑓𝑖3 𝑥4, 𝑥5  
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How many modes to use? 
• Sometimes it is not advisable to represent all “natural” dimensions of the input dataset as 

modes 
‣ The dimensions exhibit a high complexity, which cannot be factorized well 

– No significant gain in compression ratio 
– A large number of components would be needed to encode the complexity 

■ Slow decompression 
■ [Wang-2005] and [Tsai-2012] decompress spatial compression prior to rendering 

• Does not help with limitation of the GPU / main memory 
• For sequential decompression on the CPU other techniques, e.g. wavelets [Schwartz-2011], could be used instead 

 

‣ An irregular sampling pattern is present 
– Often the case with BTF measurements 
– It would be necessary to resample the input data 

 

‣ The function has to be represented in a specific linear basis in these modes 
– E.g. spherical harmonics, radial basis functions, wavelets, a basis from a PCA… 

■ For example for PRT computations [Tsai-2006, Sun-2007] 
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• Sometimes it is not advisable to represent all “natural” dimensions of the input dataset as 
modes 
‣ The dimensions exhibit a high complexity, which cannot be factorized well 

– No significant gain in compression ratio 
– A large number of components would be needed to encode the complexity 

■ Slow decompression 
■ [Wang-2005] and [Tsai-2012] decompress spatial compression prior to rendering 

• Does not help with limitation of the GPU / main memory 
• For sequential decompression on the CPU other techniques, e.g. wavelets [Schwartz-2011], could be used instead 

 

‣ An irregular sampling pattern is present 
– Often the case with BTF measurements 
– It would be necessary to resample the input data 

 

‣ The function has to be represented in a specific linear basis in these modes 
– E.g. spherical harmonics, radial basis functions, wavelets, a basis from a PCA… 

■ For example for PRT computations [Tsai-2006, Sun-2007] 
 

 

How many modes to use? 
 
 
 
 
 
 
 
 
 
 
 
 
 

Original Original 16 Components 16 Components 

• The Lego Blocks are an example 
for a BTF used in [Wang-2005] 
• The factorization of the spatial 

mode has considerable 
advantages  

• More complex leather sample  
• A much larger number of components 

would be needed for a good 
reconstruction 

Note: only one image was factorized for this example 
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How many modes to use? 

42 

• Sometimes it is not advisable to represent all “natural” dimensions of the input dataset as 
modes 
‣ The dimensions exhibit a high complexity, which cannot be factorized well 

– No significant gain in compression ratio 
– A large number of components would be needed to encode the complexity 

■ Slow decompression 
■ [Wang-2005] and [Tsai-2012] decompress spatial compression prior to rendering 

• Does not help with limitation of the GPU / main memory 
• For sequential decompression on the CPU other techniques, e.g. wavelets [Schwartz-2011], could be used instead 

 

‣ An irregular sampling pattern is present 
– Often the case with BTF measurements 
– It would be necessary to resample the input data 

 

‣ The function has to be represented in a specific linear basis in these modes 
– E.g. spherical harmonics, radial basis functions, wavelets, a basis from a PCA… 

■ For example for PRT computations [Tsai-2006, Sun-2007] 
 

 



Compression results on BTFs 

Uncompressed PCA, 100 Components 
RMSE 0.008 
SSIM 97.06% 

CP, 200 Components 
RMSE 0.013 
SSIM 96.15% 

TUCKER, 28 × 28 × 128 × 128 core 
RMSE 0.022 
SSIM 95.49% 

All datasets were compressed to about 25 MB. Input: 3×151×151×256×256 ≈ 8.8 GB 
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Compression results on BTFs 

Uncompressed PCA, 100 Components 
RMSE 0.008 

CP, 200 Components 
RMSE 0.013 

TUCKER, 28×28×128×128 core 
RMSE 0.022 

To
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view light 

Parameterization via view/light: (𝜑𝑖 ,𝜃𝑖 , 𝜑𝑜,𝜃𝑜) 



Compression results on BTFs 

Uncompressed PCA, 100 Components 
RMSE 0.008 

CP, 200 Components 
RMSE 0.010 

TUCKER, 28×28×128×128 core 
RMSE 0.013 

To
p 

Vi
ew

 
Si

ng
le

 A
B

R
D

F 

view light 

Reordered (without resampling): (𝜑𝑖 ,𝜃𝑖 , 𝜑𝑜 ,𝜃𝑜)  →  (𝜑𝑖 ,𝜃𝑖 , 𝜑𝑜 − 𝜑𝑖 ,𝜃𝑜) 



Summary 
• Quality of the results depends strongly on your data and problem 
‣ It is worth considering your parameterization, tensor layout, error metric and 

decompression requirements 
 

• BRDFs 
‣ Good results when all these aspects are taken into account 

• BTFs 
‣ Results often not better than PCA based compression 
‣ More research on parameterization might be interesting 

– More complex than for BRDFs 
■ Some effects like parallax or cosine fall-off, depend on light or view direction 
■ Highlights better parameterized via halfway vector 
■ Normal directions vary spatially 

– Combining several parameterizations [Suykens-2003] might give better results, but was not 
yet used tensor compression 
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